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Abstract 

We use simplified models based on porous-electrode theory to describe the discharge of rechargeable lithium batteries and 
derive analytic expressions for the cell potential, specific energy, and average power in terms of the relevant system parameters. 
The resulting theoretical expressions are useful for design and optimization purposes and also can be used as a tool for the 
identification of system limitations from experimental data. The system treated is an ohmically-limited cell with no concentration 
gradients having an insertion reaction whose open-circuit potential depends linearly on state-of-charge. Although the slope 
of the open-circuit potential controls the reaction distribution in the porous electrode, we find that the cell potential is 
independent of this slope. The results are applied to a cell of the form Li[polymer]LiyMn204 in order to illustrate their utility. 
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1. Introduct ion 

Rechargeable batteries based on solid lithium and 
lithium-ion cells have successfully penetrated the con- 
sumer market and are under  consideration for electric- 
vehicle applications. Mathematical modeling efforts at 
this stage are focused on optimization of the cell design 
and system parameters  and the thermal control of the 
battery module. General  models have been developed 
to simulate the behavior of these systems during charge, 
discharge, and relaxation [1-3]. However, due primarily 
to their generality, these models are complicated, and 
it is often the case that for particular systems a simplified 
treatment is possible that captures the essential features 
of the discharge behavior. In these cases, one can find 
analytic expressions for the energy and power densities 
of the system as a function of the relevant parameters  
that characterize the system. This can greatly simplify 
the design process because it may reduce the problem 
to a single or small number of dimensionless parameters  
and obviate the need for numerical simulations. 

There  has also been some interest in the past in 
obtaining capacity-rate and energy-power expressions 
for both primary [4] and secondary [5,6] batteries. These 
correlations are useful as both a design tool and a 
method for predictions of battery performance under 
different operating conditions. Usually these correla- 
tions are obtained from the analysis of experimental 

data, and functional fits are developed that are based 
on empirically defined parameters with vague theoretical 
meaning. The method that we pursue, on the other  
hand, begins with the full theoretical description of the 
single cell and makes simplifying assumptions to reduce 
the problem to limiting forms that allow correlations 
to be developed. In this way we can obtain expressions 
for the parameters that appear in the correlations in 
terms of fundamental physical properties and system 
specifications. Also, having started with the general 
mathematical description, we can develop criteria for 
deciding when these limiting cases are applicable. 

We consider a limiting model that is believed to be 
applicable to specific systems discussed in the literature. 
This model is applicable to systems in the absence of 
concentration gradients. The salt concentration is uni- 
form, for example, with a system having a unity trans- 
ference number [7] for the lithium ion or at very short 
times, much less than the diffusion time. If this is the 
case, the governing equations are much simpler, and 
several possibilities exist for the examination of ap- 
proximate analytic solutions [8]. When concentration 
gradients cannot be neglected, the situation is much 
more complex due to the coupled nature of the governing 
equations. For this reason, very few analytic solutions 
can be found in the literature that include concentration 
variations in the solution phase; this problem is generally 
relegated to numerical methods. 
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We consider the former case, in which the solution- 
phase concentration is uniform over the time of dis- 
charge of the battery. We will assume that kinetic and 
solid-phase diffusion limitations do not exist. In addition, 
we will focus on a system having a single insertion 
electrode. The generalization of the results to a lithium- 
ion cell which employs two different insertion electrodes 
should be straightforward. With these assumptions, the 
system becomes similar to an ohmically-dominated po- 
rous-electrode model [9]. The reaction moves through 
the electrode as a front which consumes all of the 
available active material at a point before moving on. 
This situation has been the object of previous study; 
our contribution here is to include the effect of an 
open-circuit potential that depends on the state-of- 
charge of the electrode, as in insertion compounds. A 
similar problem to the one above has been considered 
by Atlung et al. [10,11]. However, their treatment is 
different from the present model, and it will be shown 
that the two models may apply to different times in 
the discharge. 

The primary goal of this work will be to obtain an 
expression for the specific energy of the system as a 
function of the average specific power (Ragone plot). 
From this information, one can approach practical 
design issues such as optimal electrode thicknesses and 
porosities. 

2. Theoret ical  deve lopment  

We treat one-dimensional transport through the cell 
sandwich shown in Fig. 1. The development is based 
on porous-electrode theory [12], where the electrode 
is treated as two superimposed continua without regard 
for the actual geometric detail of the pore structure. 
The separator consists of either an inert polymer ma- 
terial or a nonaqueous liquid that acts as the solvent 
for a lithium salt. The negative electrode is a lithium 
foil, and the positive electrode is a porous electrode 
consisting of solid insertion material particles, inert 
conducting filler, and the solution phase. The porous 
electrode, is assumed to have a very large electronic 

lithium composite 
foil separator positive electrode 

L s 
x= 0 

Fig. 1. Lithium/polymer cell sandwich, consisting of lithium foil 
negative electrode, solid polymer electrolyte, and composite positive 
electrode. 

conductivity (tr>> K) and a large exchange current density 
for the insertion process. Additionally, we neglect dif- 
fusion limitations inside of the solid electrode particles; 
this is valid for Se << 1, where: 

RsZ/ 
S~ = (1) 

D~F(1 - E)cTL+ 

These conditions have been demonstrated to hold for 
typical lithium insertion electrodes under a three-hour 
discharge [2]. 

The neglect of concentration gradients represents a 
great simplification in the theoretical treatment. This 
assumption will hold for any system with a unity trans- 
ference number for the lithium ion; several polymer 
electrolytes have been developed that fulfill this con- 
dition [7]. With this assumption, as well as those given 
previously, the system is ohmically-dominated. The in- 
sertion reaction moves through the porous electrode 
like a spike, consuming all of the active material before 
moving on. This continues until either the cutoff po- 
tential is reached or the active material is completely 
consumed. 

We begin by assuming that the open-circuit potential 
of the insertion material is a linear function of the 
active material utilization: 

O 
u = u e -  k ( U  e -  vo) (2) 

q 

Here we take Q to be the integral over time of the 
local transfer current density and q is the capacity 
density (C/m3). Thus, at full discharge Q =q. The pa- 
rameter k will vary between 0 and 1, with k = 0  for a 
constant open-circuit potential and k = 1 for a material 
which reaches the cutoff potential exactly at full dis- 
charge. Larger values of k are unnecessary because 
otherwise the maximum capacity is limited by the cutoff 
potential. We imagine a reaction zone of a finite thick- 
ness that moves through the porous electrode; the 
position of the rear edge is x=xr. That is, that portion 
of the electrode for which X<Xr has been completely 
consumed (Q=q).  As we have assumed an essentially 
reversible insertion process, local equilibrium prevails, 
and: 

u =  q,, - ¢2  (3) 

The solid-phase potential, qbt, is a constant due to the 
large electronic conductivity. 

For a quasi-steady reaction zone moving through the 
electrode under a galvanostatic discharge, the velocity 
of the zone will be I/q. We wish to find an expression 
for the position of this front as a function of time. 
The local transfer current density is related to the 
divergence of the current flow in the solution phase 
through: 
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aFj° = 0/2 (4) 

Thus, from the definition of Q: 

=- (5) 

X t 

The solution-phase potential measured with a lithium 
reference electrode in the absence of a concentration 
gradient is given by Ohm's law: 

i 2 - -  - -  K i ~  (6) 

Using Eqs. (2) and (3) this becomes: 

i2 = tck(U e -  V~) OQ (7) 
q ax 

Then, differentiating Eq. (6) with respect to either time 
or distance, we find that both Q and i2 obey the same 
second-order partial differential equation: 

xk(U ° -  V~) O2Q 
q &2 (8) 

0t 

and: 

0/2  k(U o-  Vc) 02i2 
q ax 2 (9) 

If the electronic conductivity were not infinite, one 
would need to replace K with crW(tr+ x) in Eqs. (8) 
and (9). 

We can solve Eq. (9) subject to the following boundary 
conditions: 

i2=I for (X<Xr) (10) 

and: 

/2=0 at (x= oo) and ( t=0)  (11) 

These boundary conditions result from the reaction 
zone assumption. If we transform Eq. (9) by defining 
a new coordinate that moves with the reaction zone: 

It 
X = x -  - (12) 

q 

then in terms of this new variable the differential 
equation becomes: 

ai 2 I 0/2 r.k(U ° -  V~) 02i2 
+ (13) 

at q 0X q 0X 2 

This has a solution of the form: 

i2=A exp(BX) (14) 

Substitution into Eq. 13 leads to the condition that: 

- I  
B = 0  or B--- (15) 

Vc) 

Since i2=0 as X approaches 0o, we use the second 
value of B only. This boundary condition should rig- 
orously be applied at some finite value of X, but the 
problem is not tractable unless one makes the as- 
sumption that X ~  oo, meaning that the reaction zone 
is thin compared with the electrode thickness. This 
assumption will be less valid for very thin electrodes 
where a larger fraction of the active material is near 
the electrode/current collector boundary. One can see 
here the difficulty of treating a system with a finite 
electronic conductivity; then two reaction zones would 
move from either boundary inward towards the center 
of the electrode [9]. 

Next, as we know that the current density is equal 
to the cell current at the rear of the reaction zone, 
we write Eq. (14) as: 

l(x-xr) 
i2=I exp r , k ~ c )  ] for X>Xr (16) 

i2 = I  for x<X, (17) 

Here, we have written i2 in terms of the still unknown 
value of x,. One finds from Eq. (16) that the effect of 
the sloping open-circuit potential function is to spread 
out the reaction zone; as k approaches 0 the reaction 
zone becomes a delta function atx =x~. With the current 
density known, Ohm's law can be integrated to find 
the distribution of the potential in the solution phase: 

1(x_gO - 
cb2=O:(oo)+k(U'-V¢) exp r,k(UO_V¢) } (18) 

Hence, the utilized capacity is: 

i(x_xO 
Q =q exp rk(U ° -  V~)] for x>xr (19) 

Q=q for x <xr (20) 

The overall charge balance can then be used to find 
X r • 

~f O dx=It=qx,+ (21) 
qrk( U°-  V~) 

1 
0 

Thus, 

It rk(U ° -  V¢) 
= (22) 

q I 

At short times Eq. (22) gives an apparently negative 
reaction zone position. This is due to an initial transient 
period during which the capacity at the front of the 
electrode has not yet been exhausted. Our analysis does 
not apply during this period. 

Fig. 2 shows the distribution of utilized capacity 
across the porous electrode using Eqs. (19) and (22), 
for various values of k. As k increases, the open-circuit 
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Fig. 2. The distribution of utilized capacity across the  reaction zone. 
Various values of k, the slope of the open-circuit  potential vs. state- 
of-charge, are used to demonstra te  the effect of  this parameter  on 
the current  distribution. 

potential becomes more sloped, and the reaction zone 
becomes more diffuse. For large enough values of k, 
the reaction is taking place throughout the electrode; 
the reaction-zone assumption is then no longer valid. 
In order for the 'thick cell' assumption to hold, one 
requires that the utilized capacity drops essentially to 
zero before the back of the electrode is reached. This 
is obviously not the case for the k =  1 or k = 0.1 curves, 
but does appear to hold for the other values of k. The 
reaction-zone thickness is also inversely proportional 
to the superficial cell current density I and proportional 
to the conductivity K. The values of other parameters 
used in this Figure are from the model Li/MnuO4 system 
described in the Appendix. 

Now we can seek an explicit expression for the cell 
potential, and from this, the specific energy. The dis- 
tribution of potentials in the cell is: 

qb2(neg)_ (j~2(x=0) . ~ -  IL____~ (23) 
Ks 

qb2(x= 0) - ~2(x=xr) = Ix--A~ (24) 
K 

@2(x =x,) - 452( oo ) =k(U e- Vc) (25) 

q~2( oo ) - q~, = - U e (26) 

We can arbitrarily take the potential at the negative 
electrode to be zero, ~2(neg) -- 0, and then the cell 
potential is given by summing the potentials across the 
cell: 

Using the definition of Xr, this becomes: 

V= U °- ILs IZt (28) 

Notice that the cell potential is independent of the 
value of k [13]. A plot of the cell potential versus time 
for Various discharge rates is given as Fig. 3. 

Setting the cell potential in Eq. (28) equal to the 
cutoff potential determines the time of discharge: 

Integration of the instantaneous power delivered over 
the time of discharge gives the energy: 

td 

(30) 

Substitution of te from Eq. (29) gives: 

K s / \  Ks / 

These expressions can be used to calculate the average 
specific power available. The average specific power is: 

P=E/te= ~(U" + Vc- ~ ---A~) (32) 

Eqs. (31) and (32) are written on a per-unit-area basis 
and thus should be divided by the mass per unit area 
of the cell: 

M = ,o~Ls + [eps + (1 - e)p+ ]L + (33) 

which as written accounts for positive electrode and 
separator masses only, but could also include other 
masses in the system. 

Eqs. (31) and (32) are the basis for a Ragone plot 
given as Fig. 4. The system under consideration, de- 
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Fig. 3. Cell potential for various values of  the current density during 
a galvanostatic discharge. The  dashed line is the cutoff potential. 
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Fig. 4. Ragone plot of  specific energy vs. specific power for the 
manganese  dioxide system. The  dotted line is the  prediction of the 
reaction-zone model, and  the dashed line is the max imum specific 
energy based on the total capacity of  the cell. The  solid line results 
from combining the reaction-zone model with a maximum capacity 
condition. 

scribed in the Appendix, is a lithium/manganese dioxide 
cell with a solid polymer electrolyte. The dashed line 
in Fig. 4 indicates the maximum specific energy (112 
Wh/kg) that the system can provide, calculated from 
the initial capacity. The relatively low maximum specific 
energy found for this system (compared with the the- 
oretical maximum of approximately 478 Wh/kg) is due 
to the small range of capacity over which the manganese 
dioxide electrode is imagined to be used (0.6 ~<y <0.8 
in LiyMn204) in this model. Notice that a substantial 
portion of the Ragone plot is predicted to have a slope 
of - 1 .  At very high values of the specific power, the 
maximum power is approached, and the curve bends 
over and becomes vertical. 

The reaction-zone model predicts that the specific 
energy attainable continues to increase at lower values 
of the specific power because of the thick-cell assumption 
which inherently neglects the finite amount of active 
material in the cell. This result is illustrated by the 
dotted line in Fig. 4. However, the specific energy 
should bend over at lower rates and approach the 
maximum specific energy indicated in the Figure. Thus, 
the solid curve in Fig. 4 uses Eq. (30) to calculate the 
specific energy with the modification that the discharge 
time is not allowed to exceed the total capacity of the 
electrode at the given rate. The discharge time is chosen 
to be the lower of Eq. (29) and: 

qL+ 
td = - 7 -  (34) 

This is the expected behavior of the Ragone plot. 
The equations given above could be used as tools 

for the optimization of adjustable system parameters, 

primarily component thicknesses and volume fractions. 
A procedure for this is given in the literature [13]. By 
maximizing the specific energy with respect to the 
discharge rate, with the discharge time fixed (e.g., 3 
h), one finds that the optimum values are e=0.14 and 
L+/Ls=4,  for this example. Thicker and less porous 
electrodes are typical for a system optimized for a long 
discharge time. These values were used to produce 
Figs. 2 to 4, and the value of the specific energy for 
the three-hour discharge rate is indicated with a marker 
in Fig. 4. The optimum operating point is near to, but 
not quite at, the break in the Ragone plot, which is 
the usually expected result. The optimization procedure 
is more complicated if additional battery masses are 
included in Eq. (33). 

In the work of Atlung and co-workers [10,11] an 
equation analogous to our Eq. (8) is solved using the 
boundary conditions: 

aQ (t, x = O) = lq dc(U ° -  Vc) and 

O_._Q_Q (t, x = L + )  = Iq (35) 
• c o k ( u  o -  vc) 

However, as the authors point out, these boundary 
conditions are not truly valid and instead a moving- 
zone boundary condition should apply as was used in 
this work. These boundary conditions on Q apply up 
until such time that the capacity at the front of the 
electrode is exhausted, suggesting that this approach 
may be valid during the initial transient period not 
covered above (see Eq. 22). Indeed, Atlung and co- 
workers [10,11] find good agreement between experi- 
mental data and theoretical predictions at short times 
into the discharge where a t *a dependence of cell 
potential on time is expected rather than the t de- 
pendence found above. 

3. Conclusions 

A simplified model of an ohmically-dominated porous 
electrode with no diffusion or kinetic limitations is 
developed. The open-circuit potential of the electrode 
reaction depends linearly on the state-of-charge of the 
electrode, as in several commonly used insertion ma- 
terials. The model is used to derive analytic expressions 
for the specific energy and average specific power that 
are attainable. The sloping open-circuit potential brings 
about a more uniform reaction distribution in the porous 
electrode but does not enter into the cell potential. 
These equations are useful in optimization procedures 
and can be used as a guide for the correlation of 
experimental data. The formulas have been applied to 
a lithium/manganese dioxide system to illustrate their 
consequences. 
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4. List of symbols 

a specific interracial area (m2/m 3) 
C T maximum concentration in solid (mol/m 3) 
Ds diffusion coefficient of lithium in the solid elec- 

trode particles (m2/s) 
F Faraday's constant (96 487 C/eq) 
il electronic current density in the solid phase (A/ 

m 2 ) 
i2 ionic current density in the solution phase (AJ 

m 2) 
1 superficial current density (A/m 2) 
j .  pore wall flux of lithium ions (mol/(m 2 s)) 
k slope of open-circuit potential 
L cell thickness (m) 
q charge density of composite positive electrode (C/ 

m 3 ) 

Q integral of the local transfer current density (C/ 
m 3 ) 

Rs radius of positive electrode material (m) 
Sc ratio of diffusion time versus discharge time 
t time (s) 
U open-circuit potential (V) 
V cell potential (V) 
V¢ cutoff potential (V) 
x distance from the separator/positive electrode 

boundary (m) 

Greek letters 

of Transportation Technologies, Electric and Hybrid 
Propulsion Division of the US Department of Energy 
under Contract No. DE-AC03-76SF00098. 

Appendix 

1. Parameters used in the model 

We model a system with a lithium foil negative 
electrode, a solid polymer electrolyte separator, and a 
manganese dioxide composite positive electrode. The 
separator is an idealized polymer with a unity lithium- 
ion transference number, a conductivity of 4.0 × 10 -5 
S/cm, and a separator thickness of 10/~m. 

In order to have a linear open-circuit potential vari- 
ation with state-of-charge, we imagine cycling the man- 
ganese dioxide electrode over the limited range of 
0.6 <y <0.8 in LiyMn204 (thus k--0.03). This leads to 
a capacity of q--393.6 C/cm3; however, there is no way 
for the electrode to know that it is only to discharge 
in this range so we consider this to be a hypothetical 
situation. The initial open-circuit potential is 4.0 V, 
and the cutoff potential used is 2.0 V. The values of 
the electrode thickness (L+---40 /xm) and porosity 
(e= 0.14) are obtained by maximizing the cell's specific 
energy for a three-hour discharge time. 

porosity of electrode 
K ionic conductivity of electrolyte (S/m) 
tr electronic conductivity of solid matrix (S/m) 

electrical potential (V) 

Subscripts 

+ positive electrode 
d discharge 
r reaction zone 
s separator or solid phase 
T maximum concentration in intercalation material 
1 solid matrix 
2 solution phase 

Superscripts 

0 standard cell potential 
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